Go to the top

RESEARCH

The research group is interested in understanding fundamental interactions in soft materials from the molecular level and relating them to the bulk state properties. The specialty of the group is to characterize the colloidal dispersions/microstructures in details with extensive scattering techniques and to relate them to dynamics at the interface and physical properties in bulk.

The current interests include dispersions of colloids and polymers in non-equilibrium states, interfacial properties of block copolymers and polymer nanocomposites, and dispersions of 2D colloids.

Polymer Nanocomposites

PNC_Research

While nanoparticles and polymers are widely used materials in industrial/daily products, it can exhibit unique properties when they are combined. Our research group is interested in understanding of particle-polymer interactions and controlling the structures to produce desired properties in complex nanoparticle-polymer composites. Upon the deep understanding of structural behavior of polymer composite materials, versatile thin film and novel 3-D nanostructures can be created; a special interest lies on block copolymer related composites.

Currently, the following topics are being investigated

  • Colloids and polymer mixtures in non-equilibrium state
  • Block copolymer related nanocomposites
  • Functionalized particle-polymer composites

Graphene Oxide as Two-Dimensional Colloid

Graphene oxide (GO) is often referred as a 2D colloid, which can be dispersed in water and form nematic liquid crystal (LC) phase. The good dispersity and the ability to form the LC phase enables the solution processing of GO; thus, GO LC has been actively employed in high-performance graphene-based fibers or films applications through solution processing. While GO LC exhibits extraordinary physical properties of high mechanical strength, tunable bandgap or good electrical/thermal conductivity, the performance of GO LC applications can be dependent on their colloidal properties in solution. In this regard, we systematically study the stable dispersion of GO in polymer solutions and examine how polymer influence the microstructure and rheological properties of GO suspension.

(1) Graphene Oxide Liquid Crystallinity in Polymer Solutions

GOYUL

(2) The Correlation of Rheological Properties and Microstructure of GO using Rheo-SAXS

yulrheo

Nanopatterning with Block Copolymers

bcp_test
homepage update

Based on fundamental soft matter physics, we are interested in showing how soft materials can be employed in nanofabrication. More specifically, nanopatterning with block copolymers will be one of the promising applications. Since the characteristic size and spacing of block copolymer domains are on the order of 10- 100 nm, the range required by next-generation electronic and functional devices, nanopatterning with block copolymer thin films has emerged as a favorable technique. Furthermore, its distinct advantages in cost, fabrication and areal coverage are expected to overcome the shortcomings of conventional lithographic techniques.

Our focus was on

  • Film structure of Block copolymers in a confined space
  • Block Copolymer Interfacial Self-Assembly (ISA)
  • Multilayer structure with nanoparticles
  • Nano-contact printing system

Surface and Interface

1. interfacial self-assembly

research_ISA

Interfacial self-assembly of BCPs

2. drying in thin films

research_GY

drying effect on thin films in coating process

3. polymer crystallization on Graphene Oxide surface

research_SM

Tunable Liquid Crystallinity of GO by Polymer Crystallization

Going into Details for Micro- Nano- structures

1. We use small angle scatterings extensively to study the microstructure of soft matter systems listed above. Small angle x-ray scattering (SAXS), small angle neutron scattering (SANS), Grazing Incidence SAXS (GI-SAXS) and light scattering (LS) are good experimental tools to study particle interactions and polymer microstructures. We are also interested in seeing their physical properties; rheological properties are examined with conventional rheometer and Diffusing Wave Spectroscopy (DWS).

SAXS

2. Based on an understanding on the relationship between polymer and particle interactions, we investigate how the microstructure of the colloidal system correlates to physical properties such as optical, mechanical, and electrical properties.

we are focused on

– dispersion stability of particles/polymers

– microstructure of dispersed particles/polymers

– rheological properties of polymer nanocomposites/suspension

190416